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Introduction

Recordings of synaptic currents are an important
source of information about neuronal physiology
and behaviour. A single record can include re-
sponses to stimuli from multiple synapse types,
potentially providing data on interactions among
the underlying systems. However, data with mul-
tiple overlapping event types is analytically chal-
lenging. It is common to address this using phar-
macological or other constraints to simplify the
recorded activity, but there is a risk of disrupting
Important interactions, giving misleading results.

Methods for analysing complex synaptic current
records are relatively underdeveloped, with the
most popular approaches relying on peak detec-
tion by such means as threshold crossing and
template matching. Somewhat more sophisti-
cated variations have recently been applied in
specific cases [1,2], but these remain of limited
utility for more complex records. Existing meth-
ods are not able reliably to distinguish mixed
event classes with overlapping time courses.

Here we describe a new model-based approach
to the identification and classification of multiple
event classes within a single record, provided
the event current time courses can be reason-
ably approximated by a sum of exponentials.

Signal model

Event currents of a given class are modelled as
a weighted sum of non-negative conductance
components, cY. Each component decays with
an exponential time course, approximated by a
geometric decay constant E('). The contribution
weights o are constant, and may be negative.
Input events (such as vesicle release) add an
equal amount ¢ to all components (Figure A).

Currents from different event classes combine
additively, and the signal is corrupted by noise ¢,
assumed Gaussian with mean 0. If there are n
event classes, each having m; components, the
overall signal vector x. is given by:
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The constants o) (up to an arbitrary scaling

factor) and g(') constitute a ‘template’ for each
event class. These must be specified a priori,
typically by fitting a sum of exponentials to se-
lected well-isolated events in the record.

Inference model

Given an experimental recording x, we wish to
infer the most probable underlying event train
¢@. or — equivalently but more efficiently — the
component decomposition C.. A maximum likeli-
hood estimate can be obtained by minimising
the residual sum of squares. We do not know the
true prior event distribution, but we expect it to
be sparse. This is imposed by regularisation with
the L, norm:
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(The additional constraints enforce the equality
of ¢ for all components of a class.) This minimi-
sation appears unwieldy, but it can be formu-
lated as a second order cone program, a class of
convex optimisation problem for which standard
solver tools exist [3].
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Simulation results

The forward model can be simulated to provide
test data for which the true underlying event
trains are known, incorporating a variety of noise
levels, event classes and contaminating factors
such as baseline drift. Fitting to such data sug-
gests that the original event trains are recovered
reliably in many realistic scenarios. An example
using two event classes is shown in Figure B.

Event times are typically identified with high ac-
curacy, and type classification is also usually re-
liable except where events are virtually simulta-
neous. Event amplitudes (estimating the stimu-
lus strength driving the current peaks) tend to be
underestimated, to a degree governed by the
regularisation parameter A. Aresult of the trade-
off between overfitting and our sparsity prior, this
may be compensated in post-processing.

Experimental results

We applied the fitting procedure to whole cell
patch clamp recordings obtained from acutely vi-
brodissociated rat cerebellar Purkinje neurons
[4]. In this preparation most of the dendritic tree
Is absent and the cell receives inputs only from a
few isolated synaptic boutons, primarily from in-
hibitory interneurons.

In Figure C, a single event class was fitted, cor-
responding to these inhibitory inputs. Interneu-
ron boutons are believed to exhibit multi-
vesicular releases [5,6]. Our fit results are con-
sistent with such behaviour. Notably, large
events show a compound rising phase with sev-
eral events in quick succession, suggesting mul-
tiple vesicle releases that are closely but not per-
fectly synchronised.

In Figure D, the cell was held at a voltage be-
tween the reversal potentials for cation and
anion-mediated currents. The resulting events
are small, but can be clearly seen to be going in
opposite directions, implying that some excit-
atory synapses remained active on this cell. The
fitting procedure was able to identify and classify
events despite the high relative noise level. The
true event train is not known, but the events
found are persuasive (see enlarged examples).
The inhibitory events again show clustering sug-
gestive of multi-vesicular release (lower trace).

Discussion

We have successfully demonstrated that mul-
tiple event classes can be identified and sepa-
rated from at least a subset of mixed synaptic
current recordings, via a model-based fitting pro-
cedure. Though still a work in progress, this ca-
pacity will enable more sophisticated analyses of
existing experimental data. Further, by making it
possible to analyse and interpret more complex
results, it promises to encourage the perfor-
mance of less constrained, more realistic experi-
ments, allowing the acquisition of better informa-
tion that will advance our understanding of neu-
ronal function.
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